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a b s t r a c t

Proper identification of safe and unsafe food at the processing plant is important for maximizing the
public health benefit of food by ensuring both its consumption and safety. Risk assessment is a holistic
approach to food safety that consists of four steps: 1) hazard identification; 2) exposure assessment; 3)
hazard characterization; and 4) risk characterization. Risk assessments are modeled by mapping the risk
pathway as a series of unit operations and associated pathogen events and then using probability
distributions and a random sampling method to simulate the rare, random, variable and uncertain nature
of pathogen events in the risk pathway. To model pathogen events, a rare event modeling approach is
used that links a discrete distribution for incidence of the pathogen event with a continuous distribution
for extent of the pathogen event. When applied to risk assessment, rare event modeling leads to the
conclusion that the most highly contaminated food at the processing plant does not necessarily pose the
highest risk to public health because of differences in post-processing risk factors among distribution
channels and consumer populations. Predictive microbiology models for individual pathogen events can
be integrated with risk assessment models using the rare event modeling method.

Published by Elsevier Ltd.

1. Introduction1

Risk assessment is a holistic approach to food safety that is the
umbrella under which all food safety information can be organized
to protect public health. It consists of four steps: 1) hazard identi-
fication; 2) exposure assessment; 3) hazard characterization; and
4) risk characterization. Predictive microbiology has an important
role in risk assessment but innovative modeling methods are
needed to integrate predictive models with risk assessment
models. One way to approach this integration is to develop the risk
assessment model first and then use it as a guide to develop
predictive models. By developing predictive models that are
specific for risk assessments, a better assessment and management
of food safety risks can be obtained (Oscar, 2004a).

Although food is contaminated with physical, chemical and
microbial hazards, the focus here will be on innovative modeling
methods that have been applied to assessing the risk of microbial
hazards. In contrast to chemical and physical hazards, microbial

hazards in food are dynamic because of pathogen events (i.e.
growth, survival, death, physical removal and cross-contamination)
that increase and decrease their number as the foodmoves through
the risk pathway. Pathogen events in food are often rare events,
which mean that they occur much less than 100% of the time. They
are also random, variable and uncertain.

To model pathogen events properly, a rare event modeling
method is used in which a probability distribution for incidence of
the pathogen event is linked to a probability distribution for extent
of the pathogen event and then the distributions are randomly
sampled to obtain inputs for formulas that are used to calculate
changes in pathogen numbers on individual servings of food as
they move through the risk pathway (Fig. 1). For microbial hazards,
it is important to round the pathogen number results to whole
numbers because it is not possible to have a fraction of a microbe.
An important feature of rare event modeling is that it allows risk
assessors to simulate changes in pathogen incidence and number as
food moves through the risk pathway.

2. Rare event modeling for risk assessment

An example of a risk assessment model that uses the rare event
modeling method is that of Oscar (1998) for Salmonella and whole
chickens. This risk assessment model was constructed in an Excel
spreadsheet and is simulated using @Risk (Palisade Corp. Newfield,
NY), a spreadsheet add-in program that performs random sampling
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1 The plenary lecture upon which this paper is based was presented at the 6th
International Conference on Predictive Modeling Foods held in Washington, D.C.
from September 8 to 12, 2009. The slides used in the presentation are available at:
http://www.icpmf.org/pp/Plenary%20lecture_Oscar.pdf Access date: February 2,
2010.
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of probability distributions. The model calculates the change in the
number of Salmonella on individual chickens as theymove from the
processing plant to the table. A series of graphs are presented that
show the number of Salmonella on individual chickens after each
unit operation and pathogen event versus the number of Salmonella
on those same chickens at packaging in the processing plant. The
results demonstrate that which chickens are temperature-abused
during distribution, under-cooked during meal preparation and
cross-contaminated with Salmonella during serving occurs
randomly. Likewise, which chickens are associated with a normal
or high risk dose of Salmonella at consumption occurs randomly. A
high risk dose would be associated for example with a highly
virulent strain of Salmonella, consumption of an anti-acid pill with
the meal and(or) a consumer with an underlying health problem.
Consequently, at consumption, Oscar (1998) found that there is
a low correlation between the probability of a Salmonella infection
and the initial level of Salmonella contamination on the chicken at
the processing plant. Rather, a chicken with a lower level of
Salmonella contamination at packaging could pose a higher risk of
foodborne illness if it had by random chance been temperature-
abused during distribution, under-cooked and then consumed by
someone with an underlying health problem.

2.1. Rare event modeling for hazard identification

The cornerstone of any risk assessment is knowledge of the
initial distribution of hazard in the food at some point in the risk
pathway. Determining the level of a microbial hazard in samples of
food is time consuming and expensive and thus, realistically can
only be done at one point in the risk pathway. A good place for
a food company to apply hazard identification is at packaging in the
processing plant.

Another important consideration for hazard identification is the
microbial ecology of the food. Most microbial hazards are minority
members of the microbial community of food and as a result they
are not uniformly distributed in the food. In fact, most samples of
a food will not contain the hazard. It is also important to consider
that the hazard can be in various states of attachment (i.e. unat-
tached, attached and entrapped) within the food matrix and thus,
the method used must be capable of quantifying the hazard
regardless of how it is associated with the food.

One approach to quantify all forms of a microbial hazard in
a food for risk assessment is to develop a rare event model that
predicts the initial contamination or distribution of the microbial
hazard in the food as a function of detection time during whole
food sample enrichment and as a function of food sample size
(Oscar, 2004c, 2008a). At the beginning of the enrichment period,
the target pathogen will be below the detection limit of the assay.
However, during incubation under standard growth conditions, the
target pathogen will multiply and eventually reach the detection
limit of the assay. For example, in an experiment conducted by
Oscar (2004c), chicken meat (25 g) was inoculated with a known
number of Salmonella from one to 106 cells and then a sample of the
enrichment broth was collected at different times of incubation and
subjected to detection by a polymerase chain reaction (PCR)
method for Salmonella. As the Salmonella grew fromnon-detectable
(<2 log/ml) to detectable (>2 log/ml) levels, the PCR band in the
agarose gel went from none to faint to less than full to full. The
bands were then scored and a PCR detection time score was
obtained for the sample. Next, a standard curve with a 95%
prediction interval was constructed by plotting the PCR detection
time score as a function of the initial number of Salmonella that
were inoculated into the samples. This standard curve was then
used to construct a rare event model. First, a pert distribution for
each PCR detection time score was determined from the standard
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Fig. 1. Diagram of the rare event modeling method that involves linking a discrete distribution for incidence of the pathogen event to a continuous (i.e. pert) distribution for extent
of the pathogen event. Only when the output of the discrete distribution is a ‘1’ indicating that the pathogen event occurred is the output from the pert distribution used to calculate
pathogen number. Outputs from the pert distribution are log numbers. The ‘Power’ function converts the log numbers from the pert distribution to their anti-log numbers and the
‘Round’ function converts the numbers to whole numbers because it is not possible to have a fraction of a pathogen. The example shown here is for initial contamination of a food at
packaging. Food unit or iteration one was contaminated with 63 cells of the pathogen, whereas food units 2, 3 and 100 were not contaminated with the pathogen.

Table 1
Input settings for the hazard identification and exposure assessment module A for plants A and B: first risk assessment.

Unit Operation Pathogen Event Incidence Extent

Plant A Plant B Minimum Median Maximum Units

Packaging Contamination 25% 10% 0 1 4 log D
Distribution Growth 20% 20% 0.1 1 3 log D
Washing Removal 15% 15% �0.1 �1 �3 log D
Cooking Survival 10% 10% �0.1 �5 �7 log D
Serving Contamination 15% 15% �3 �2 �1 log rate
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curve and its 95% prediction interval and then these distributions
were assembled in an Excel spreadsheet. Next, a discrete distribu-
tion for incidence of PCR detection time scores was added. The
model was then simulated with @Risk to determine the initial
contamination for any size sample that was a multiple of the
original sample size, which was 25 g. The outputs from this model
were the incidence of contaminated servings and a pert distribu-
tion for the extent of contamination among contaminated servings.
These distributions can be directly used as inputs in a risk assess-
ment model that uses the rare event modeling method.

2.2. Rare event modeling for exposure assessment

As mentioned before, hazard identification is too expensive to
apply at more than one point in the risk pathway. Consequently,
after the initial distribution of hazard in the food is determined by
microbiological testing and rare eventmodeling, as described in the
previous section, predictive models for unit operations and asso-
ciated pathogen events that define the risk pathway from hazard
identification to consumption can be developed and used to predict
how the initial distribution of the pathogen changes from hazard
identification to consumption.

Important considerations for the development of predictive
models for exposure assessment are that they should be developed
in real food with native microflora and from a low and ecological
initial dose of the pathogen so that the predictions provided reduce
uncertainty in the risk assessment model. This has been accom-
plished for chicken products using Salmonella strains with natural
resistance to multiple antibiotics and a combination MPN and CFU
method to enumerate low and high numbers of the pathogen
(Oscar, 2006, 2007, 2008b, 2009a,b). For example, Oscar (2009a)
developed a predictive model that uses rare event and neural
network modeling methods to predict growth and survival of
Salmonella from a low initial dose (<10 cells) on raw chicken skin
with nativemicroflora and as a function of serotype prevalence. The
output from this model is a distribution that can be used directly in
a risk assessment model. This is a good example of a predictive
microbiology model that uses innovative modeling methods to
reduce uncertainty in a risk assessment model.

2.3. Rare event modeling for hazard characterization and risk
characterization

When a food serving that is contaminated with a microbial
hazard is consumed, the response of the host falls on a continuum
from no response to death. To model the host response, criteria are
used to classify the response into a specific category, such as
infection or illness. The percentage of hosts that exhibit the specific
response of interest is then graphed as a function of the log dose of
the test pathogen and the data are fitted to a sigmoid-shaped dose-
response curve to determine the log dose of pathogen that causes
50% of the host population to exhibit the response of interest. Data
for such dose-response curves are usually obtained in outbreak
investigations or controlled feeding trials with a uniform pathogen,
uniform food and uniform host population.

Although human feeding trials are no longer ethical, a human
feeding trial was conducted in which healthy male prisoners were
fed different doses of 13 strains of Salmonella in eggnog after their
noon meal (McCullough et al., 1951aec). Illness data from this
feeding trial have been modeled using the rare event method
(Oscar, 2004b). When the latter dose-response model was used to
simulate feeding trials inwhich the eggnog was contaminated with
multiple strains of Salmonella with different virulence potentials,
the population dose-response curves obtained were non-sigmoid
in shape indicating that when a food is contaminated with multiple

hazards of different virulence a sigmoid dose-response curve is not
obtained and thus, a different approach to modeling hazard char-
acterization is needed.

In a new approach (i.e. disease triangle modeling) to dose-
responsemodeling developed by Oscar (1998, in press), a rare event
modeling approach is used to simulate the disease triangle (i.e.
interaction among the food, pathogen and host that determines the
host response). In this approach, hazard, food and host factors are
classified as normal or high risk. When the hazard, food or host
factor is classified as high risk (e.g. top clinical isolate of the path-
ogen, consumption of an anti-acid pill with the meal or a host with
an underlying health problem), the probability distribution for
illness dose is shifted to the left by 0.5, 1 or 2 log, respectively. In
this method of modeling hazard characterization, a discrete
distribution is used to model incidence of the eight classes or
combinations of normal and high risk hazard, food and host factors,
whereas pert distributions are used to model extent of response
doses within each class of risk factors. During simulation of the
model, @Risk randomly assigns a response dose to the consumption
event and when the response dose is greater than the dose
consumed in the simulated serving of food, no response occurs;
otherwise, a response occurs (Oscar, 1998, 2004a,b).

3. Scenario analysis for assessing relative risk

Because human feeding trials are not ethical, it will never be
possible to make absolute predictions of food safety risks with low

Table 2
Input settings for the hazard characterization and risk characterization module B for
plants A and B: first risk assessment.a

Class Incidence (%) Extent (log dose)

Hazard Food Host Plant A Plant B RDmin RD50 RDmax

Normal Normal Normal 70 70 4.0 6.0 8.0
High Normal Normal 6 6 3.0 5.0 7.0
Normal High Normal 2 2 3.5 5.5 7.5
High High Normal 2 2 2.5 4.5 6.5
Normal Normal High 5 5 2.0 4.0 6.0
High Normal High 9 9 1.0 3.0 5.0
Normal High High 3 3 1.5 3.5 5.5
High High High 3 3 0.5 2.5 4.5

% High
risk
Hazard 20 20
Food 10 10
Host 20 20

a Abbreviations: RDmin¼minimum response dose; RD50¼median response
dose; and RDmax¼maximum response dose.

Table 3
Predicted cases of foodborne illness per 100,000 food units for plants A and B: first
risk assessment.a

Plant A Plant B

Replicate simulations 200 200

Minimum 0 0
25% Percentile 2 0
Median 3 1
75% Percentile 4 2
Maximum 11 5

Mean 3.25 1.26
Std. Deviation 1.98 1.14
Std. Error 0.140 0.081

Lower 95% CI of mean 2.97 1.10
Upper 95% CI of mean 3.53 1.42

a Foodborne illness differed (P< 0.05) between plants A and B as determined by
a one-tailed Mann Whitney nonparametric t test using version 5.0 of the GraphPad
Prism software program (GraphPad Inc., San Diego, CA).
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uncertainty because information about the dose of pathogens that
cause illness in humans will not be available. Thus, the best that can
be accomplished is to make relative predictions of risk and then to
use these risk assessments to better inform food safety decisions.
One of the best tools available for making relative assessments of
risk is scenario analysis where a scenario in the context of a risk
assessment model is defined as a unique set of input distributions.
By comparing the relative risk of different ‘what if’ scenarios, risk
assessors can determine the relative safety of different batches of
food destined for specific distribution channels and consumer
populations and in the process better identify unsafe food before it
is consumed.

To illustrate this concept, Oscar (in press) described a fictional
example of a food company that has two processing plants that are
located in different regions of a country but that produce the same
food product that is contaminated with the same microbial hazard.
Food from Plant A is more highly contaminated than food from
Plant B but only food from Plant B has caused foodborne illness. To
determine why this is so, the company hired a risk assessor who
created a rare event risk assessment model to assess the situation.
The model consisted of a series of unit operations and associated
hazard events (Table 1). The risk assessormade the assumption that
the risk pathway after packaging was the same for food from Plant
A and Plant B.

The rare event model for risk assessment was created in an Excel
spreadsheet and was simulated using @Risk (Oscar, in press). The
input settings for the hazard identification and exposure assess-
ment module were the same for Plants A and B except that when
the scenario for Plant B was simulated the setting for hazard inci-
dence at packaging was changed from 25% to 10% to reflect the
lower level of contamination for food from Plant B (Table 1).

Module B was used for hazard characterization and risk char-
acterization and used the disease triangle modeling method for
dose-response that was described above. The settings for Plants A

and Bwere the same in Module B (Table 2). To determine the illness
rate the model was simulated for 100,000 servings of food (i.e.
100,000 iterations). To characterize the uncertainty of the illness
rate, 200 replicate simulations for each scenario were conducted
using a different random number generator seed (RNGS) to initiate
each replicate simulation. The RNGS is a number that initiates the
random selection process in @Risk; each RNGS produces a unique
outcome of the model.

Results of the simulations indicated that the food from Plant A
wasmore likely to cause illness than the food from Plant B (Table 3).
However, this did not explain why only consumers of food from
Plant B were getting ill. So the food company hired a second risk
assessor with a different vision. This risk assessor, using the risk
assessment model developed by the first risk assessor as a guide,
had the company collect data (i.e. hazard strain, product time and
temperature during distribution, and food handling practices and
demographics of consumers in the two distribution channels) and
develop predictive models to better assess the risk of illness from
Plants A and B.

Results of this research indicated that there were important
differences between Plants A and B after the food left the plant. It
was discovered that food from Plant B was more often subjected to
temperature abuse and cross-contamination after cooking than
food from Plant A (Table 4). In addition, food from Plant B was more
often contaminated with a high risk strain of the hazard and was
more often consumed by someone from the high risk population
(Table 5).

After simulating the model using the new data, the risk assessor
filtered the results to remove the non-contaminated servings. He
then used the filtered results to prepare summary tables for the risk
managers. The first table (Table 6) presented to the risk managers
showed the change in hazard incidence and number as a function of
unit operations. Although the total hazard load was lower for Plant
B at packaging, at serving the hazard load was slightly higher for
food from Plant B than Plant A because of the higher incidence of
temperature abuse and cross-contamination for food from Plant B.
The second table (Table 7) presented to the risk managers showed
the population doseeresponse curves for Plants A and B and indi-
cated that the RD50 was lower for food from Plant B than food from
plant A. This occurred because food from plant B was more often
contaminated with a high risk strain of the hazard and was more

Table 5
Input settings for the hazard characterization and risk characterization module B for
plants A and B: second risk assessment.a

Class Incidence (%) Extent (log dose)

Hazard Food Host Plant A Plant B RDmin RD50 RDmax

Normal Normal Normal 70 30 4.0 6.0 8.0
High Normal Normal 6 38 3.0 5.0 7.0
Normal High Normal 2 1 3.5 5.5 7.5
High High Normal 2 1 2.5 4.5 6.5
Normal Normal High 5 5 2.0 4.0 6.0
High Normal High 9 17 1.0 3.0 5.0
Normal High High 3 4 1.5 3.5 5.5
High High High 3 4 0.5 2.5 4.5

% High
risk
Hazard 20 60
Food 10 10
Host 20 30

a Abbreviations: RDmin¼minimum response dose; RD50¼median response
dose; and RDmax¼maximum response dose.

Table 6
Hazard identification and exposure assessment results for plants A and B: second
risk assessment.

Unit Operation Pathogen Event Incidence (%) Extent (pathogens/
100,000 food units)

Plant A Plant B Plant A Plant B

Packaging Contamination 25.0 10.0 2,331,774 943,943
Distribution Growth 25.0 10.0 18,498,300 14,373,100
Washing Removal 24.0 9.4 15,479,740 10,548,820
Cooking Survival 0.11 0.05 5265 317
Serving Contamination 1.55 1.47 44,076 52,142

Table 4
Input settings for the hazard identification and exposure assessment module A for plants A and B: second risk assessment.

Unit Operation Pathogen Event Incidence Extent

Plant A Plant B Minimum Median Maximum Units

Packaging Contamination 25% 10% 0 1 4 log D
Distribution Growth 20% 40% 0.1 1 3 log D
Washing Removal 15% 30% �0.1 �1 �3 log D
Cooking Survival 10% 10% �0.1 �5 �7 log D
Serving Contamination 15% 30% �3 �2 �1 log rate
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often consumed by someone from the high-risk population (Table
5). Finally, the table (Table 8) showing the relative risk of illness
was presented to the risk managers and showed that the risk of
illness was higher for food from Plant B than for food from Plant A.
These results, which considered differences in pathogen virulence
and post-process risk factors among plants, differed from those of
the previous risk assessment that did not consider differences in
pathogen virulence and post-process risk factors among plants. The
food company was happy with the results of this risk assessment

because it provided an explanation for why food from Plant B was
causing more illness than food from Plant A.

4. Conclusions

In our current approach to food safety, food safety objectives
and microbial performance standards applied at the processing
plant are used to identify safe and unsafe food. This approach to
food safety is supported by risk assessments that assume a single
risk pathway after food leaves the processing plant and that do not
employ the rare event modeling approach. However, this approach
to food safety only on rare occasions is successful at identifying
unsafe food because it fails to consider differences in pathogen
virulence and post-process risk factors among processing plants. In
contrast, by implementing the rare event modeling approach
described in this paper, a risk assessment based approach that
considers differences in pathogen virulence and post-process risk
factors among processing plants in its evaluation of food safety can
be implemented and will result in a better assessment and
management of food safety risks.
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Table 7
Hazard characterization results for plants A and B: second risk assessment.

Percentile Log dose

Plant A Plant B

0 0.60 0.60
5 2.59 2.27
10 3.22 2.75
15 3.78 3.15
20 4.32 3.51
25 4.68 3.80
30 4.93 4.07
35 5.13 4.31
40 5.30 4.52
45 5.46 4.72
50 5.61 4.90
55 5.75 5.08
60 5.89 5.25
65 6.04 5.42
70 6.18 5.60
75 6.33 5.78
80 6.49 5.97
85 6.66 6.18
90 6.87 6.44
95 7.14 6.80
100 7.97 7.95

Table 8
Predicted cases of foodborne illness per 100,000 food units for plants A and B:
second risk assessment.a

Plant A Plant B

Replicate simulations 200 200

Minimum 0 1
25% Percentile 2 6
Median 3 7.5
75% Percentile 4 10
Maximum 11 14

Mean 3.25 7.75
Std. Deviation 1.98 2.59
Std. Error 0.140 0.183

Lower 95% CI of mean 2.97 7.39
Upper 95% CI of mean 3.53 8.11

a Foodborne illness differed (P< 0.05) between plants A and B as determined by
a one-tailed Mann Whitney nonparametric t test using version 5.0 of the GraphPad
Prism software program (GraphPad Inc., San Diego, CA).
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